Haaland, D. Graphite-liquid-vapor triple point pressure and the density of liquid carbon. Carbon. 1976, 14 (6): 357. doi:10.1016/0008-6223(76)90010-5.
Savvatimskiy, A. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963–2003). Carbon. 2005, 43 (6): 1115. doi:10.1016/j.carbon.2004.12.027.
Nasibulin, Albert G.; Pikhitsa, P.V.; Jiang, H.; Brown, D. P.; Krasheninnikov, A.V.; Anisimov, A. S.; Queipo, P.; Moisala, A.; et al. A novel hybrid carbon material. Nature Nanotechnology. 2007, 2 (3): 156–161. Bibcode:2007NatNa...2..156N. PMID 18654245. doi:10.1038/nnano.2007.37.
Nasibulin, A; Anisimov, Anton S.; Pikhitsa, Peter V.; Jiang, Hua; Brown, David P.; Choi, Mansoo; Kauppinen, Esko I. Investigations of NanoBud formation. Chemical Physics Letters. 2007, 446: 109–114. Bibcode:2007CPL...446..109N. doi:10.1016/j.cplett.2007.08.050.
Vieira, R; Ledoux, Marc-Jacques; Pham-Huu, Cuong. Synthesis and characterisation of carbon nanofibers with macroscopic shaping formed by catalytic decomposition of C2H6/H2 over nickel catalyst. Applied Catalysis A. 2004, 274: 1–8. doi:10.1016/j.apcata.2004.04.008.
Rode, A. V.; Hyde, S. T.; Gamaly, E. G.; Elliman, R. G.; McKenzie, D. R.; Bulcock, S. Structural analysis of a carbon foam formed by high pulse-rate laser ablation. Applied Physics A-Materials Science & Processing. 1999, 69 (7): S755–S758. doi:10.1007/s003390051522.
Itzhaki, Lior; Altus, Eli; Basch, Harold; Hoz, Shmaryahu. Harder than Diamond: Determining the Cro]tional Area and Young's Modulus of Molecular Rods. Angew. Chem. Int. Ed. 2005, 44 (45): 7432–5. PMID 16240306. doi:10.1002/ange.200502448.
Gannes, Leonard Z.; Del Rio, Carlos Martı́nez; Koch, Paul. Natural Abundance Variations in Stable Isotopes and their Potential Uses in Animal Physiological Ecology. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology. 1998, 119 (3): 725–737. doi:10.1016/S1095-6433(98)01016-2.
Levine, Joel S.; Augustsson, Tommy R.; Natarajan, Murali. The prebiological paleoatmosphere: stability and composition. Origins of Life and Evolution of Biospheres. 1982, 12 (3): 245–259. Bibcode:1982OrLi...12..245L. doi:10.1007/BF00926894.
Moll N. G., Clutter D. R., Thompson W. E. Carbon Trioxide: Its Production, Infrared Spectrum, and Structure Studied in a Matrix of Solid CO2. Journal of Chemical Physics. 1966, 45 (12): 4469–4481. Bibcode:1966JChPh..45.4469M. doi:10.1063/1.1727526.
Prekob, Ádám; Hajdu, Viktória; Muránszky, Gábor; Kocserha, István; Fiser, Béla; Viskolcz, Béla; Vanyorek, László. Application of carbonized ion exchange resin beads as catalyst support for gas phase hydrogenation processes. Reaction Kinetics, Mechanisms and Catalysis (Springer Science and Business Media LLC). 2019-11-02, 129 (1): 85–94. ISSN 1878-5190. doi:10.1007/s11144-019-01694-7.
Sikora, Emőke; Kiss, Adrienn; H. Göndör, Zsuzsa; Pekker, Péter; Kristály, Ferenc; Szőri, Milán; Rágyanszki, Anita; Viskolcz, Béla; Fiser, Béla; Vanyorek, László. Fine-tuning the catalytic activity by applying nitrogen-doped carbon nanotubes as catalyst supports for the hydrogenation of olefins. Reaction Kinetics, Mechanisms and Catalysis (Springer Science and Business Media LLC). 2019-12-14, 129 (1): 95–106. ISSN 1878-5190. doi:10.1007/s11144-019-01705-7.
Pangotra, Dhananjai; Csepei, Lénárd-István; Roth, Arne; Ponce de León, Carlos; Sieber, Volker; Vieira, Luciana. Anodic production of hydrogen peroxide using commercial carbon materials. Applied Catalysis B: Environmental (Elsevier BV). 2022, 303: 120848. ISSN 0926-3373. doi:10.1016/j.apcatb.2021.120848.
Perry, Samuel C.; Pangotra, Dhananjai; Vieira, Luciana; Csepei, Lénárd-István; Sieber, Volker; Wang, Ling; Ponce de León, Carlos; Walsh, Frank C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry (Springer Science and Business Media LLC). 2019-06-19, 3 (7): 442–458. ISSN 2397-3358. doi:10.1038/s41570-019-0110-6.
Duan, Weijian; Li, Ge; Lei, Zhenchao; Zhu, Tonghe; Xue, Yuzhou; Wei, Chaohai; Feng, Chunhua. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research (Elsevier BV). 2019, 161: 126–135. ISSN 0043-1354. doi:10.1016/j.watres.2019.05.104.
Sakamoto, M.; Endriz, J. G.; Scifres, D. R. 120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink. Electronics Letters. 1992, 28 (2): 197–199. doi:10.1049/el:19920123.
Nasibulin, Albert G.; Pikhitsa, P.V.; Jiang, H.; Brown, D. P.; Krasheninnikov, A.V.; Anisimov, A. S.; Queipo, P.; Moisala, A.; et al. A novel hybrid carbon material. Nature Nanotechnology. 2007, 2 (3): 156–161. Bibcode:2007NatNa...2..156N. PMID 18654245. doi:10.1038/nnano.2007.37.
Nasibulin, A; Anisimov, Anton S.; Pikhitsa, Peter V.; Jiang, Hua; Brown, David P.; Choi, Mansoo; Kauppinen, Esko I. Investigations of NanoBud formation. Chemical Physics Letters. 2007, 446: 109–114. Bibcode:2007CPL...446..109N. doi:10.1016/j.cplett.2007.08.050.
Levine, Joel S.; Augustsson, Tommy R.; Natarajan, Murali. The prebiological paleoatmosphere: stability and composition. Origins of Life and Evolution of Biospheres. 1982, 12 (3): 245–259. Bibcode:1982OrLi...12..245L. doi:10.1007/BF00926894.
Moll N. G., Clutter D. R., Thompson W. E. Carbon Trioxide: Its Production, Infrared Spectrum, and Structure Studied in a Matrix of Solid CO2. Journal of Chemical Physics. 1966, 45 (12): 4469–4481. Bibcode:1966JChPh..45.4469M. doi:10.1063/1.1727526.
Prekob, Ádám; Hajdu, Viktória; Muránszky, Gábor; Kocserha, István; Fiser, Béla; Viskolcz, Béla; Vanyorek, László. Application of carbonized ion exchange resin beads as catalyst support for gas phase hydrogenation processes. Reaction Kinetics, Mechanisms and Catalysis (Springer Science and Business Media LLC). 2019-11-02, 129 (1): 85–94. ISSN 1878-5190. doi:10.1007/s11144-019-01694-7.
Sikora, Emőke; Kiss, Adrienn; H. Göndör, Zsuzsa; Pekker, Péter; Kristály, Ferenc; Szőri, Milán; Rágyanszki, Anita; Viskolcz, Béla; Fiser, Béla; Vanyorek, László. Fine-tuning the catalytic activity by applying nitrogen-doped carbon nanotubes as catalyst supports for the hydrogenation of olefins. Reaction Kinetics, Mechanisms and Catalysis (Springer Science and Business Media LLC). 2019-12-14, 129 (1): 95–106. ISSN 1878-5190. doi:10.1007/s11144-019-01705-7.
Pangotra, Dhananjai; Csepei, Lénárd-István; Roth, Arne; Ponce de León, Carlos; Sieber, Volker; Vieira, Luciana. Anodic production of hydrogen peroxide using commercial carbon materials. Applied Catalysis B: Environmental (Elsevier BV). 2022, 303: 120848. ISSN 0926-3373. doi:10.1016/j.apcatb.2021.120848.
Perry, Samuel C.; Pangotra, Dhananjai; Vieira, Luciana; Csepei, Lénárd-István; Sieber, Volker; Wang, Ling; Ponce de León, Carlos; Walsh, Frank C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nature Reviews Chemistry (Springer Science and Business Media LLC). 2019-06-19, 3 (7): 442–458. ISSN 2397-3358. doi:10.1038/s41570-019-0110-6.
Duan, Weijian; Li, Ge; Lei, Zhenchao; Zhu, Tonghe; Xue, Yuzhou; Wei, Chaohai; Feng, Chunhua. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research (Elsevier BV). 2019, 161: 126–135. ISSN 0043-1354. doi:10.1016/j.watres.2019.05.104.