Globale Erwärmung (German Wikipedia)

Analysis of information sources in references of the Wikipedia article "Globale Erwärmung" in German language version.

refsWebsite
Global rank German rank
2nd place
3rd place
1st place
1st place
1,778th place
1,959th place
123rd place
6th place
234th place
203rd place
low place
4,438th place
75th place
133rd place
33rd place
2nd place
4th place
7th place
18th place
181st place
857th place
511th place
212th place
598th place
120th place
143rd place
1,725th place
1,346th place
low place
low place
12th place
25th place
1,896th place
741st place
418th place
22nd place
195th place
255th place
low place
low place
low place
low place
2,415th place
2,273rd place
1,293rd place
678th place
226th place
12th place
low place
low place
7th place
19th place
7,189th place
low place
2,128th place
4,772nd place
8,161st place
558th place
68th place
29th place
low place
2,380th place
low place
low place
low place
low place
1,624th place
377th place
6,456th place
low place
231st place
103rd place
2,112th place
1,609th place
66th place
4th place
993rd place
1,265th place
low place
low place
2,532nd place
4,037th place
3,624th place
4,041st place
4,162nd place
5,503rd place
low place
low place
low place
low place
565th place
897th place
1,871st place
4,217th place
low place
low place
1,540th place
1,676th place
317th place
14th place
low place
low place
7,917th place
477th place
6,375th place
3,255th place
916th place
1,758th place
low place
3,040th place
low place
8,597th place
3,867th place
5,127th place
3,251st place
238th place
3,307th place
493rd place
2,224th place
612th place
1,960th place
130th place
776th place
182nd place
low place
low place
1,601st place
2,732nd place
1,487th place
95th place
884th place
51st place
1,143rd place
68th place
488th place
1,027th place
6,094th place
low place
low place
low place
4,584th place
6,459th place
222nd place
272nd place
7,995th place
9,671st place
1,993rd place
973rd place
6th place
40th place
low place
low place
low place
low place
7,365th place
6,544th place
low place
low place
low place
8,071st place
3,341st place
3,657th place
2,117th place
3,181st place
9th place
9th place
1,137th place
74th place
low place
low place
9,065th place
3,577th place
low place
low place
low place
low place
2,393rd place
2,660th place
719th place
1,553rd place
low place
5,063rd place
low place
low place
1,366th place
81st place
3,468th place
271st place
4,066th place
262nd place
267th place
15th place
3,921st place
273rd place
5,817th place
506th place
low place
low place
4,528th place
4,170th place
low place
low place
low place
low place
low place
804th place
149th place
298th place
low place
low place
low place
low place
low place
low place
2,399th place
168th place
low place
6,415th place
low place
low place
2,144th place
142nd place
low place
low place

aaas.org

whatweknow.aaas.org

agu.org

agu.org

  • R. Philipona, B. Dürr, C. Marty, A. Ohmura, M. Wild (2004): Radiative forcing – measured at Earth’s surface – corroborate the increasing greenhouse effect. In: Geophysical Research Letters, Band 31, 6. Februar, online

blogs.agu.org

ametsoc.org

journals.ametsoc.org

annualreviews.org

archive.org

atmos-chem-phys-discuss.net

  • J. A. Mäder, J. Staehelin, T. Peter, D. Brunner, H. E. Rieder, W. A. Stahel: Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. In: Atmospheric Chemistry and Physics Discussions. 10. Jahrgang, Nr. 8, 2010, S. 19005, doi:10.5194/acpd-10-19005-2010 (englisch, atmos-chem-phys-discuss.net [PDF]).

auswaertiges-amt.de

badische-zeitung.de

berliner-zeitung.de

bgs.ac.uk

  • Vicky Hards: Volcanic Contributions to the Global Carbon Cycle. Hrsg.: British Geological Survey. Nr. 10, 2005 (bgs.ac.uk).

bildungsserver.de

wiki.bildungsserver.de

bundesregierung.de

bundestag.de

dip21.bundestag.de

capefarewell.com

climateactiontracker.org

climatechange2013.org

  • „Despite the robust multi-decadal warming, there exists substantial interannual to decadal variability in the rate of warming, with several periods exhibiting weaker trends (including the warming hiatus since 1998) … Fifteen-year-long hiatus periods are common in both the observed and CMIP5 historical GMST time series“, „Box TS.3: Climate Models and the Hiatus in Global Mean Surface Warming of the Past 15 Years“, IPCC, Climate Change 2013: Technical Summary, S. 37 and S. 61–63.

columbia.edu

comuv.com

mmm.comuv.com

confex.com

ams.confex.com

  • Russell S. Vose u. a. (2005): Maximum and minimum temperature trends for the globe: An update through 2004. In: Geophysical Research Letters, Band 32, L23822. doi:10.1029/2005GL024379 (PDF; 241 kB)

dandc.eu

de-ipcc.de

deadurl.invalid

deutschlandfunk.de

deutschlandfunkkultur.de

doi.org

  • Hasselmann K, Bengtsson L, Cubasch U, Hegerl GC, Rodhe H, Roeckner E, von Storch H, Voss R, Waszkewitz J: Detection of anthropogenic climate change using a fingerprint method. In: Peter D. Ditlevsen (Hrsg.): Modern dynamical meteorology: Proceedings from a symposium in honor of Prof. Aksel Wiin-Nielsen. University of Copenhagen. Department of Geophysics, Copenhagen 1995, doi:10.17617/2.2534307 (mpg.de [PDF; 1,2 MB]): „The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5 %.“
  • Cook et al.: Quantifying the consensus on anthropogenic global warming in the scientific literature. In: Environmental Research Letters. Band 8, 2013, doi:10.1088/1748-9326/8/2/024024.
  • James Powell: Scientists Reach 100% Consensus on Anthropogenic Global Warming. In: Bulletin of Science, Technology & Society (Hrsg.): Technology & Society. Band 37, Nr. 4, S. 183–184, doi:10.1177/0270467619886266.
  • John Cook et al.: Consensus on consensus: a synthesis of consensus estimates on human-caused global warming. 2016, doi:10.1088/1748-9326/11/4/048002.
  • Noah Diffenbaugh, Christopher Field: Changes in Ecologically Critical Terrestrial Climate Conditions. In: Science. 341. Jahrgang, Nr. 6145, August 2013, S. 486–492, doi:10.1126/science.1237123 (englisch, researchgate.net)., Zusammenfassung online
  • Richard E. Zeebe, Andy Ridgwell, James C. Zachos: Anthropogenic carbon release rate unprecedented during the past 66 million years. In: Nature Geoscience. 9. Jahrgang, Nr. 4, April 2016, S. 325–329, doi:10.1038/ngeo2681 (englisch, lta.org [PDF]).
  • S. A. Marcott, J. D. Shakun, P. U. Clark, A. C. Mix: A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. In: Science. 339. Jahrgang, Nr. 6124, 7. März 2013, S. 1198, doi:10.1126/science.1228026 (englisch).
  • Joeri Rogelj et al.: Paris Agreement climate proposals need a boost to keep warming well below 2 °C. In: Nature. Band 534, 2016, S. 631–639, doi:10.1038/nature18307.
  • Will Steffen et al.: Trajectories of the Earth System in the Anthropocene. In: Proceedings of the National Academy of Sciences. Band 115, Nr. 33, 2018, S. 8252–8259, doi:10.1073/pnas.1810141115.
  • D.R. Feldman et al.: Observational determination of surface radiative forcing by CO2 from 2000 to 2010. In: Nature. Band 519, 2015, S. 339–343, doi:10.1038/nature14240.
  • Gabriele C. Hegerl, Thomas R. Karl, Myles Allen u. a.: Climate Change Detection and Attribution: Beyond Mean Temperature Signals. In: Journal of Climate, Band 19, Special Section, 15. Oktober 2006, S. 5058–5077, doi:10.1175/JCLI3900.1 (Online)
  • P.A. Arias, N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, K. Zickfeld: Technical Summary. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Hrsg.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA 2021, doi:10.1017/9781009157896.002 (ipcc.ch [PDF; 30,9 MB]).
  • J. A. Mäder, J. Staehelin, T. Peter, D. Brunner, H. E. Rieder, W. A. Stahel: Evidence for the effectiveness of the Montreal Protocol to protect the ozone layer. In: Atmospheric Chemistry and Physics Discussions. 10. Jahrgang, Nr. 8, 2010, S. 19005, doi:10.5194/acpd-10-19005-2010 (englisch, atmos-chem-phys-discuss.net [PDF]).
  • M. Pathak, R. Slade, P.R. Shukla, J. Skea, R. Pichs-Madruga, D. Ürge-Vorsatz, 2022: Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Sechster Sachstandsbericht des IPCC [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi:10.1017/9781009157926.002.
  • Corinne Le Quéré et al.: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. In: Nature Climate Change. Band 10, 2020, S. 647–653, doi:10.1038/s41558-020-0797-x.
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 69f, doi:10.1017/9781009157896.002.
  • Yi Ge Zhang, Mark Pagani, Zhonghui Liu, Steven M. Bohaty, Robert DeConto: A 40-million-year history of atmospheric CO2. In: The Royal Society (Philosophical Transactions A). 371. Jahrgang, Nr. 2001, September 2013, doi:10.1098/rsta.2013.0096 (englisch, yale.edu [PDF]).
  • Aradhna K. Tripati, Christopher D. Roberts & Robert A. Eagle: Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years. In: Science. Band 326, No. 5958, 4. Dezember 2009, S. 1394–1397, doi:10.1126/science.1178296
  • Urs Siegenthaler, Thomas F. Stocker, Eric Monnin, Dieter Lüthi, Jakob Schwander, Bernhard Stauffer, Dominique Raynaud, Jean-Marc Barnola, Hubertus Fischer, Valérie Masson-Delmotte & Jean Jouzel: Stable Carbon Cycle–Climate Relationship During the Late Pleistocene. In: Science. Band 310, No. 5752, S. 1313–1317, 25. November 2005, doi:10.1126/science.1120130
  • Dieter Lüthi, Martine Le Floch, Bernhard Bereiter, Thomas Blunier, Jean-Marc Barnola, Urs Siegenthaler, Dominique Raynaud, Jean Jouzel, Hubertus Fischer, Kenji Kawamura & Thomas F. Stocker: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. In: Nature. Band 453, S. 379–382, 2008, doi:10.1038/nature06949
  • Drew T. Shindell, Greg Faluvegi, Dorothy M. Koch, Gavin A. Schmidt, Nadine Unger & Susanne E. Bauer: Improved attribution of climate forcing to emissions. In: Science. Band 326, Nr. 5953, 2009, S. 716–718, doi:10.1126/science.1174760
  • Mason Inman: Carbon is forever. In: Nature Reports Climate Change. 20. November 2008, doi:10.1038/climate.2008.122
  • B. H. Samset, M. Sand, C. J. Smith, S. E. Bauer, P. M. Forster: Climate Impacts From a Removal of Anthropogenic Aerosol Emissions. In: Geophysical Research Letters. Band 45, Nr. 2, 8. Januar 2018, ISSN 1944-8007, S. 1020–1029, doi:10.1002/2017GL076079.
  • Yangyang Xu, Veerabhadran Ramanathan, David G. Victor: Global warming will happen faster than we think. In: Nature. Band 564, Nr. 7734, 5. Dezember 2018, S. 30–32, doi:10.1038/d41586-018-07586-5 (nature.com).
  • Robert Kaufman et al.: Reconciling anthropogenic climate change with observed temperature 1998–2008. In: Proceedings of the National Academy of Sciences. Band 108, Nr. 29, 2011, S. 11790–11793, doi:10.1073/pnas.1102467108 (pnas.org).
  • J Imbrie, J Z Imbrie: Modeling the Climatic Response to Orbital Variations. In: Science. 207. Jahrgang, Nr. 4434, 1980, S. 943–953, doi:10.1126/science.207.4434.943, PMID 17830447, bibcode:1980Sci...207..943I (englisch).
  • Berger A, Loutre MF: Climate: An exceptionally long interglacial ahead? In: Science. 297. Jahrgang, Nr. 5585, 2002, S. 1287–8, doi:10.1126/science.1076120, PMID 12193773 (englisch).
  • Judith Lean (2010): Cycles and trends in solar irradiance and climate. In: Wiley Interdisciplinary Reviews: Climate Change, Volume 1, Issue 1, S. 111 bis 122, doi:10.1002/wcc.18
  • Antonello Pasini, Umberto Triacca, Alessandro Attanasio: Evidence of recent causal decoupling between solar radiation and global temperature. In Environmental Research Letters Band 7, Nr. 3, Juli – September 2012, doi:10.1088/1748-9326/7/3/034020 PDF
  • Henrik Svensmark, Eigil Friis-Christensen: Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. In: Journal of Atmospheric and Solar-Terrestrial Physics. Band 59, 1997, doi:10.1016/S1364-6826(97)00001-1.
  • E. M. Dunne et al.: Global atmospheric particle formation from CERN CLOUD measurements. In: Science. Band 354, 2016, doi:10.1126/science.aaf2649.
  • J. R. Pierce, P. J. Adams: Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates? In: Geophysical Research Letters. Band 36, 2009, doi:10.1029/2009GL037946.
  • V.-M. Kerminen et al.: Atmospheric data over a solar cycle: no connection between galactic cosmic rays and new particle formation. In: Atmospheric Chemistry and Physics. Band 10, 2010, doi:10.5194/acp-10-1885-2010.
  • T Sloan, A W Wolfendale: Testing the proposed causal link between cosmic rays and cloud cover. In: Environmental Research Letters. Band 3, 2008, doi:10.1088/1748-9326/3/2/024001.
  • J. R. Pierce: Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment. In: Journal of Geophysical Research: Atmospheres. Band 122, 2017, doi:10.1002/2017JD027475.
  • Hamish Gordon et al.: Causes and importance of new particle formation in the present-day and preindustrial atmospheres. In: Journal of Geophysical Research: Atmospheres. Band 122, 2017, doi:10.1002/2017JD026844.
  • Brian J. Soden, Richard T. Wetherald, Georgiy L. Stenchikov, Alan Robock: Global Cooling After the Eruption of Mount Pinatubo: A Test of Climate Feedback by Water Vapor. In: Science. 296. Jahrgang, April 2002, S. 727–730, doi:10.1126/science.296.5568.727 (englisch, @1@2Vorlage:Toter Link/s3.amazonaws.coms3.amazonaws.com (Seite nicht mehr abrufbar. Suche in Webarchiven)).
  • John Fasullo, Andrew Schurer, Luke Barnard, Gareth S. Jones, Ilya Usoskin: The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. In: Journal of Space Weather and Space Climate. Band 7, 2017, ISSN 2115-7251, S. A33, doi:10.1051/swsc/2017034 (swsc-journal.org [abgerufen am 16. August 2019]).
  • Christoph C. Raible, Julian Flückiger, Abdul Malik, Matthias Worni, Andrew Schurer: Last phase of the Little Ice Age forced by volcanic eruptions. In: Nature Geoscience. Band 12, Nr. 8, August 2019, ISSN 1752-0908, S. 650–656, doi:10.1038/s41561-019-0402-y (nature.com [abgerufen am 16. August 2019]).
  • Isaac M. Held, Brian J. Soden: Water Vapor Feedback and Global Warming. In: Annual Review of Energy and the Environment. Band 25, Nr. 1, 1. November 2000, ISSN 1056-3466, S. 441–475, doi:10.1146/annurev.energy.25.1.441 (annualreviews.org [abgerufen am 16. August 2019]).
  • Flanner, M. G.: Integrating anthropogenic heat flux with global climate models. In: Geophys. Res. Lett. 36. Jahrgang, Nr. 2, 2009, S. L02801, doi:10.1029/2008GL036465, bibcode:2009GeoRL..3602801F (englisch).
  • Block, A., K. Keuler, and E. Schaller: Impacts of anthropogenic heat on regional climate patterns. In: Geophys. Res. Lett. 31. Jahrgang, Nr. 12, 2004, S. L12211, doi:10.1029/2004GL019852, bibcode:2004GeoRL..3112211B (englisch, agu.org (Memento des Originals vom 6. Juni 2011 im Internet Archive) [abgerufen am 11. Juli 2011]).
  • Berg, Matthew, et al., A stock-flow consistent input–output model with applications to energy price shocks, interest rates, and heat emissions. New J. Phys. 17 (2015) 015011 doi:10.1088/1367-2630/17/1/015011
  • Xiaochun Zhang, Ken Caldeira: Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels. In: Geophysical Research Letters. Band 42, Nr. 11, 2015, S. 4548–4555, doi:10.1002/2015GL063514.
  • Thomas C. Peterson: Assessment of Urban Versus Rural In Situ Surface Temperatures in the Contiguous United States: No Difference Found. In: Journal of Climate. Band 16, Nr. 18, 1. September 2003, ISSN 0894-8755, S. 2941–2959, doi:10.1175/1520-0442(2003)0162.0.CO;2.
  • Thomas C. Peterson, Kevin P. Gallo, Jay Lawrimore, Timothy W. Owen, Alex Huang: Global rural temperature trends. In: Geophysical Research Letters. Band 26, Nr. 3, 1999, ISSN 1944-8007, S. 329–332, doi:10.1029/1998GL900322.
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 59f, doi:10.1017/9781009157896.002.
  • Schneider von Deimling, Thomas; Andrey Ganopolski, Hermann Held, Stefan Rahmstorf (2006): How cold was the Last Glacial Maximum? In: Geophysical Research Letters, Band 33, L14709, doi:10.1029/2006GL026484 (PDF; 731 kB)
  • Darrell Kaufman, Nicholas McKay, Cody Routson, Michael Erb, Christoph Dätwyler, Philipp S. Sommer, Oliver Heiri, Basil Davis: Holocene global mean surface temperature, a multi-method reconstruction approach. In: Nature Scientific Data. 7. Jahrgang, Juni 2020, doi:10.1038/s41597-020-0530-7 (englisch).
  • Nerilie J. Abram, Helen V. McGregor, Jessica E. Tierney, Michael N. Evans, Nicholas P. McKay, Darrell S. Kaufman, Kaustubh Thirumalai, Belen Martrat, Hugues Goosse, Steven J. Phipps, Eric J. Steig, K. Halimeda Kilbourne, Casey P. Saenger, Jens Zinke, Guillaume Leduc, Jason A. Addison, P. Graham Mortyn, Marit-Solveig Seidenkrantz, Marie-Alexandrine Sicre, Kandasamy Selvaraj, Helena L. Filipsson, Raphael Neukom, Joelle Gergis, Mark A. J. Curran, Lucien von Gunten: Early onset of industrial-era warming across the oceans and continents. In: Nature. 536. Jahrgang, Nr. 7617, 24. August 2016, S. 411, doi:10.1038/nature19082 (englisch).
  • John A. Church, Neil J. White, Leonard F. Konikow, Catia M. Domingues, J. Graham Cogley, Eric Rignot, Jonathan M. Gregory, Michiel R. van den Broeke, Andrew J. Monaghan, Isabella Velicogna: Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. In: Geophysical Research Letters. 38. Jahrgang, Nr. 18, September 2011, S. 1944–2007, doi:10.1029/2011GL048794 (englisch).
  • Sydney Levitus: Warming of the world ocean, 1955–2003. In: Geophysical Research Letters. 32, 2005, doi:10.1029/2004GL021592.
  • Lijing Cheng, John Abraham u. a.: Record-Setting Ocean Warmth Continued in 2019. In: Advances in Atmospheric Sciences. 37, 2020, S. 137, doi:10.1007/s00376-020-9283-7.
  • Russell S. Vose u. a. (2005): Maximum and minimum temperature trends for the globe: An update through 2004. In: Geophysical Research Letters, Band 32, L23822. doi:10.1029/2005GL024379 (PDF; 241 kB)
  • L. V. Alexander u. a. (2006): Global observed changes in daily climate extremes of temperature and precipitation. In: Journal of Geophysical Research Band 111, D05109, doi:10.1029/2005JD006290
  • Kevin E. Trenberth, John T. Fasullo: An apparent hiatus in global warming? In: Earth’s Future. 1. Jahrgang, Nr. 1, Dezember 2013, ISSN 2328-4277, S. 19–32, doi:10.1002/2013EF000165 (englisch, wiley.com).
  • Kristina Pistone, Ian Eisenman, Veerabhadran Ramanathan: Radiative Heating of an Ice-Free Arctic Ocean. In: Geophysical Research Letters. Band 46, Nr. 13, 2019, ISSN 1944-8007, S. 7474–7480, doi:10.1029/2019GL082914.
  • Jordi Vilà-Guerau de Arellano, Chiel C. van Heerwaarden, Jos Lelieveld: Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. In: Nature Geoscience. Band 5, 2012, S. 701–704, doi:10.1038/ngeo1554 (researchgate.net).
  • Mark D. Zelinka, David A. Randal, Mark J. Webb und Stephen A. Klein: Clearing clouds of uncertainty. In: Nature Climate Change. 2017, doi:10.1038/nclimate3402.
  • Tapio Schneider, Colleen M. Kaul, Kyle G. Pressel: Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. In: Nature Geoscience. 12, 2019, S. 163, doi:10.1038/s41561-019-0310-1.
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 96f, doi:10.1017/9781009157896.002.
  • Katharine L Ricke, Ken Caldeira: Maximum warming occurs about one decade after a carbon dioxide emission. In: Environmental Research Letters. 9. Jahrgang, Nr. 12, 1. Dezember 2014, ISSN 1748-9326, S. 124002, doi:10.1088/1748-9326/9/12/124002 (englisch).
  • Susan Solomon, Gian-Kasper Plattner, Reto Knutti, Pierre Friedlingstein: Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences doi:10.1073/pnas.0812721106 Online (PDF)
  • G.-K. Plattner, Reto Knutti u. a.: Long-Term Climate Commitments Projected with Climate–Carbon Cycle Models. In: Journal of Climate. 21, 2008, S. 2721, doi:10.1175/2007JCLI1905.1.
  • Katarzyna B. Tokarska et al.: The climate response to five trillion tonnes of carbon. In: Nature Climate Change. Band 6, 2016, S. 851–855, doi:10.1038/nclimate3036.
  • Gavin L. Foster et al.: Future climate forcing potentially without precedent in the last 420 million years. In: Nature Communications. Band 8, 2017, doi:10.1038/ncomms14845.
  • Ricarda Winkelmann et al.: Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. In: Science Advances. Band 1, Nr. 8, 2015, doi:10.1126/sciadv.1500589.
  • Roland Jackson: Eunice Foote, John Tyndall and a Question of Priority. In: Notes and Records (The Royal Society Journal of the History of Science). 2019, doi:10.1098/rsnr.2018.0066 (englisch, royalsocietypublishing.org [PDF]).
  • B. D. Santer, M. F. Wehner u. a.: Contributions of anthropogenic and natural forcing to recent tropopause height changes. In: Science. Band 301, Nummer 5632, Juli 2003, S. 479–483, doi:10.1126/science.1084123, PMID 12881562.
  • Wiliam L. Donn, David M. Shaw: Model of climate evolution based on continental drift and polar wandering. In: Bulletin. 88. Jahrgang, Nr. 3, März 1977, S. 390–396, doi:10.1130/0016-7606(1977)88<390:MOCEBO>2.0.CO;2 (englisch).
  • J.C.G Walker, P.B. Hays, J.F. Kasting: A Negative Feedback Mechanism for the Long-term Stabilization of Earth’s Surface Temperature. In: J. Geophys. Res. 86. Jahrgang, 1981, S. 1,147–1,158, doi:10.1029/JC086iC10p09776 (englisch, .geosc.psu.edu (Memento des Originals vom 22. Oktober 2013 im Internet Archive)).
  • Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P.: A Neoproterozoic Snowball Earth. In: Science. 281. Jahrgang, Nr. 5381, 28. August 1998, S. 1342–6, doi:10.1126/science.281.5381.1342, PMID 9721097, bibcode:1998Sci...281.1342H (englisch, sciencemag.org). (PDF; 260 kB)
  • Georg Feulner: Formation of most of our coal brought Earth close to global glaciation. In: PNAS. 114. Jahrgang, Nr. 43, Oktober 2017, S. 11333–11337, doi:10.1073/pnas.1712062114 (englisch).
  • Yadong Sun, Michael M. Joachimski, Paul B. Wignall, Chunbo Yan, Yanlong Chen, Haishui Jiang, Lina Wang, Xulong Lai: Lethally Hot Temperatures During the Early Triassic Greenhouse. In: Science. Lethally Hot Temperatures During the Early Triassic Greenhouse. Jahrgang, Nr. 366, Oktober 2012, doi:10.1126/science.1224126 (englisch).
  • Michael M. Joachimski, Xulong Lai, Shuzhong Shen, Haishui Jiang, Genming Luo, Bo Chen, Jun Chen and Yadong Sun: Climate warming in the latest Permian and the Permian–Triassic mass extinction. In: Geology. 40. Jahrgang, Nr. 3, Januar 2012, S. 195–198, doi:10.1130/G32707.1 (englisch, gsapubs.org).
  • Gabriel Bowen, Timothy J. Bralower, Margareth L. Delaney, Gerald R. Dickens, Daniel C. Kelly, Paul L. Koch, Lee R. Kump, Jin Meng, Lisa C. Sloan, Ellen Thomas, Scott L. Wing, James C. Zachos: Eocene hyperthermal event offers insight into greenhouse warming. In: EOS. 87. Jahrgang, Nr. 17, Juni 2011, S. 165–169, doi:10.1029/2006EO170002 (englisch).
  • Joan Feynman, Alexander Ruzmaikin: Climate stability and the development of agricultural societies. In: Climatic Change. 84. Jahrgang, Nr. 3–4, 2007, S. 295–311, doi:10.1007/s10584-007-9248-1 (englisch).
  • Mark Pagani, Zhonghui Liu, Jonathan LaRiviere, Ana Christina Ravelo: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. In: Nature Geoscience. 3. Jahrgang, 2010, doi:10.1038/ngeo724 (englisch, umass.edu [PDF])., abgerufen am 8. Oktober 2015
  • W. M. Kurschner, J. van der Burgh H. Visscher, D. L. Dilcher: Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. In: Marine Micropaleontology. 27. Jahrgang, Nr. 1–4, 1996, S. 299–312, doi:10.1016/0377-8398(95)00067-4 (englisch).
  • Robin Haunschild et al.: Climate Change Research in View of Bibliometrics. In: PLOS ONE. Band 11, Nr. 7, 2016, doi:10.1371/journal.pone.0160393.
  • John Cook et al.: Quantifying the consensus on anthropogenic global warming in the scientific literature. In: Environmental Research Letters. 2013, doi:10.1088/1748-9326/8/2/024024 (englisch, iop.org [PDF]).
  • Patrick T. Brown, Ken Caldeira: Greater future global warming inferred from Earth’s recent energy budget. Nature 552, 2017, doi:10.1038/nature24672 (freier Volltext).
  • Maxwell T. Boykoff: Public Enemy No. 1? Understanding Media Representations of Outlier Views on Climate Change. In: American Behavioral Scientist. Band 57, Nr. 6, 2013, S. 796–817, doi:10.1177/0002764213476846.
  • Naomi Oreskes: The Scientific Consensus on Climate Change. In: Science. Band 306, Nr. 5702, 2004, S. 1686, doi:10.1126/science.1103618.
  • Anderegg et al.: Expert credibility in climate change. In: Proceedings of the National Academy of Sciences. Band 107, Nr. 27, 2010, S. 12107–12109, doi:10.1073/pnas.1003187107.
  • Uri Shwed, Peter S. Bearman: The Temporal Structure of Scientific Consensus Formation. In: American Sociological Review. Band 75, Nr. 6, 2010, S. 817–840, doi:10.1177/0003122410388488.
  • Geoffrey Supran, Stefan Rahmstorf, Naomi Oreskes: Assessing ExxonMobil’s global warming projections. In: Science. Band 379, 2023, doi:10.1126/science.abk0063.
  • Philip Kokic, Steven Crimp, Mark Howden: A probabilistic analysis of human influence on recent record global mean temperature changes. Climate Risk Management 3, 2014, S. 1–12, doi:10.1016/j.crm.2014.03.002.
  • Karin Edvardsson Björnberg u. a.: Climate and environmental science denial: A review of the scientific literature published in 1990–2015. In: Journal of Cleaner Production. Band 167, 2017, S. 229–241, doi:10.1016/j.jclepro.2017.08.066.
  • Sven Ove Hansson: Science denial as a form of pseudoscience. In: Studies in History and Philosophy of Science. Band 63, 2017, S. 39–47, doi:10.1016/j.shpsa.2017.05.002.
  • Paul C. Stern: Sociology. Impacts on climate change views. In: Nature Climate Change. Band 6, 2016, S. 341–342, doi:10.1038/nclimate2970.
  • Constantine Boussalis, Travis G. Coan: Text-mining the signals of climate change doubt. In: Global Environmental Change. Band 36, 2016, S. 89–100, doi:10.1016/j.gloenvcha.2015.12.001.
  • Riley E. Dunlap and Peter J. Jacques: Climate Change Denial Books and Conservative Think Tanks: Exploring the Connection. In: American Behavioral Scientist. Band 57, Nr. 6, 2013, S. 699–731, doi:10.1177/0002764213477096.
  • Robert J. Brulle: Institutionalizing delay: foundation funding and the creation of U.S. climate change counter-movement organizations. In: Climatic Change. 2013, doi:10.1007/s10584-013-1018-7.
  • Kirsti M. Jylhä: Denial Versus Reality of Climate Change. In: Dominick A. DellaSala, Michael A. Goldstein (Hrsgs.) Encyclopedia of the Anthropocene, Band 2. Climate Change. Elsevier 2018, 487–492, S. 487 doi:10.1016/B978-0-12-809665-9.09762-7.
  • Rebecca Newman, Ilan Noy: The global costs of extreme weather that are attributable to climate change. In: Nature Communications. September 2023, doi:10.1038/s41467-023-41888-1 (open access).
  • Kevin Rennert, Frank Errickson, Brian C. Prest, Lisa Rennels, Richard G. Newell, William Pizer, Cora Kingdon, Jordan Wingenroth, Roger Cooke, Bryan Parthum, David Smith, Kevin Cromar, Delavane Diaz, Frances C. Moore, Ulrich K. Müller, Richard J. Plevin, Adrian E. Raftery, Hana Ševčíková, Hannah Sheets, James H. Stock, Tammy Tan, Mark Watson, Tony E. Wong, David Anthoff: Comprehensive evidence implies a higher social cost of CO2. In: Nature. 1. September 2022, doi:10.1038/s41586-022-05224-9 (open access).
  • Timothy M. Lenton, Hermann Held, Elmar Kriegler, Jim W. Hall, Wolfgang Lucht, Stefan Rahmstorf, Hans Joachim Schellnhuber: Tipping elements in the Earth's climate system. In: Proceedings of the National Academy of Sciences. Band 105, Nr. 6, 2008, S. 1786–1793, doi:10.1073/pnas.0705414105.
  • Carlos Nobre, Thomas E. Lovejoy: Amazon Tipping Point. In: Science Advances. Band 4, Nr. 2, 1. Februar 2018, ISSN 2375-2548, S. eaat2340, doi:10.1126/sciadv.aat2340 (sciencemag.org [abgerufen am 25. August 2019]).
  • Ramakrishna R. Nemani u. a. (2003): Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. In: Science 300 (5625), S. 1560–1563 doi:10.1126/science.1082750
  • Della-Marta, P. M., M. R. Haylock, J. Luterbacher, H. Wanner (2007): Doubled length of western European summer heat waves since 1880. In: Journal of Geophysical Research, Band 112, D15103, doi:10.1029/2007JD008510
  • P. Martens, R. S. Kovats, S. Nijhof, P. de Vries, M. T. J. Livermore, D. J. Bradley, J. Cox, A. J. McMichael (1999): Climate change and future populations at risk of malaria. In: Global Environmental Change. Volume 9, Supplement 1, Oktober, S. S89–S107 doi:10.1016/S0959-3780(99)00020-5.
  • Marco Springmann u. a.: Global and regional health eff ects of future food production under climate change: a modelling study. In: The Lancet. Band 387, Nr. 10031, 2016, S. 1937–1946, doi:10.1016/S0140-6736(15)01156-3.
  • P. Martens u. a.: Climate change and future populations at risk of malaria. In: Global Environmental Change. Bd. 9, Supplement 1 (1999), S. 89–107 doi:10.1016/S0959-3780(99)00020-5.
  • M. van Lieshout u. a.: Climate change and malaria: analysis of the SRES climate and socio-economic scenarios. In: Global Environmental Change Bd. 14, Ausgabe 1 (2004), S. 87–99 doi:10.1016/j.gloenvcha.2003.10.009.
  • Kerstin S. Treydte u. a.: The twentieth century was the wettest period in northern Pakistan over the past millennium. In: Nature 440 (2006), S. 1179–1182. doi:10.1038/nature04743
  • P. C. D. Milly, R. T. Wetherald, K. A. Dunne, T. L. Delworth: Increasing risk of great floods in a changing climate. In: Nature. 31. Januar 2002, S. 514–517, V. 415, doi:10.1038/415514a.
  • Kevin Trenberth, Aiguo Dai, Roy M. Rasmussen, David B. Parsons: The Changing Pattern of Precipitation. In: Bulletin of the American Meteorological Society. September 2003, S. 1205–1217, doi:10.1175/BAMS-84-9-1205 (PDF; 2,2 MB (Memento vom 11. Juni 2010 im Internet Archive))
  • S. Jevrejeva, J. C. Moore, A. Grinsted: How will sea level respond to changes in natural and anthropogenic forcings by 2100? In: Geophysical Research Letters. 37, 2010, S. n/a, doi:10.1029/2010GL042947.
  • Anders Levermann et al., The multimillennial sea-level commitment of global warming. In: Proceedings of the National Academy of Sciences 110, No. 34, (2013), 13745–13750, doi:10.1073/pnas.1219414110.
  • Anders Levermann, Johannes Feldmann: Scaling of instability time-scales of Antarctic outlet glaciers based on one-dimensional similitude analysis, doi:10.5194/tc-2018-252 (PDF).
  • Gregory, J.M., P. Huybrechts, and S.C.B. Raper: Threatened loss of the Greenland ice-sheet. In: Nature 428, 2004, 616, doi:10.1038/428616a.
  • Lythe, M.B., D.G. Vaughan, and BEDMAP Consortium: A new ice thickness and subglacial topographic model of Antarctica In: Journal of Geophysical Research 106(B6), 2001, 11335–11351, doi:10.1029/2000JB900449.
  • Thomas R. Knutson u. a. (2010): Tropical cyclones and climate change. In: Nature Geoscience. 3 (3), S. 157–163 doi:10.1038/ngeo779
  • Vladimir Petoukhov, Stefan Rahmstorf, Stefan Petri, Hans Joachim Schellnhuber: Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. PNAS, 2013, doi:10.1073/pnas.1222000110.
  • Nick Watts et al.: The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. In: The Lancet. 2017, doi:10.1016/S0140-6736(17)32464-9.
  • Stephan Lewandowsky: Future Global Change and Cognition. In: Topics in Cognitive Science. Band 8, 2016, S. 7–18, hier 11, doi:10.1111/tops.12188.
  • Gabriel Chan, Robert Stavins, Zou Ji: International Climate Change Policy. In: Annual Review of Resource Economics. 2018, doi:10.1146/annurev-resource-100517-023321.
  • Vgl. Christiana Figueres u. a.: Three years to safeguard our climate. In: Nature. Band 546, 2017, S. 593–595, doi:10.1038/546593a.
  • Carlo C. Jaeger, Julia Jaeger: Three views of two degrees. In: Regional Environmental Change. Dezember 2010, doi:10.1007/s10113-010-0190-9.
  • Johannes Reichl, Jed J. Cohen, Christian A. Klöckner, Andrea Kollmann, Valeriya Azarova: The drivers of individual climate actions in Europe. In: Global Environmental Change. Band 71, 1. November 2021, ISSN 0959-3780, S. 102390, doi:10.1016/j.gloenvcha.2021.102390 (sciencedirect.com [abgerufen am 22. November 2021]).
  • Kenneth Hansen et al.: Status and perspectives on 100 % renewable energy systems. In: Energy. Band 175, 2019, S. 471–480, doi:10.1016/j.energy.2019.03.092.
  • Marshall Burke et al.: Large potential reduction in economic damages under UN mitigation targets. In: Nature. Band 557, 2018, S. 549–553, doi:10.1038/s41586-018-0071-9.
  • Drew Shindell, Yunha Lee, Greg Faluvegi: Climate and health impacts of US emissions reductions consistent with 2 °C. In: Nature Climate Change. Band 6, 2016, S. 503–507, doi:10.1038/nclimate2935.
  • Mark Z. Jacobson et al.: 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. In: Joule. Band 1, Nr. 1, 2017, S. 108–121, doi:10.1016/j.joule.2017.07.005.
  • Ehteshami, Chan: The role of hydrogen and fuel cells to store renewable energy in the future energy network – potentials and challenges. Energy Policy 73, (2014), 103–109, S. 103, doi:10.1016/j.enpol.2014.04.046.
  • Edgar G. Hertwich et al., Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon-technologies. Proceedings of the National Academy of Sciences, 6. Oktober 2014, doi:10.1073/pnas.1312753111
  • Pete Smith u. a.: Biophysical and economic limits to negative CO2 emissions. In: Nature Climate Change. Band 6, 2016, S. 42–50, doi:10.1038/nclimate2870.
  • David P. Keller, Ellias Y. Feng & Andreas Oschlies: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. In: Nature. 5. Jahrgang, Januar 2014, S. 3304, doi:10.1038/ncomms4304 (englisch, nature.com): “We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change.”
  • Stephen Clune, Enda Crossin, Karli Verghese: Systematic review of greenhouse gas emissions for different fresh food categories. In: Journal of Cleaner Production. Band 140, Nr. 2, 2017, S. 766–783, doi:10.1016/j.jclepro.2016.04.082.
  • Matthew N. Hayek, Helen Harwatt, William J. Ripple, Nathaniel D. Mueller: The carbon opportunity cost of animal-sourced food production on land. In: Nature Sustainability. 7. September 2020, ISSN 2398-9629, S. 1–4, doi:10.1038/s41893-020-00603-4 (englisch, nature.com).
  • Popp, A., Lotze-Campena, H., Bodirskya, B. (2010): Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Global Environmental Change. Band 20, Nr. 3, S. 451–462, doi:10.1016/j.gloenvcha.2010.02.001.

dradio.de

duncker-humblot.de

ejournals.duncker-humblot.de

  • Claudia Kemfert, Barbara Praetorius: Die ökonomischen Kosten des Klimawandels und der Klimapolitik. In: DIW, Vierteljahreshefte zur Wirtschaftsforschung. 74, 2/2005, S. 133–136 Online

dwd.de

ed.ac.uk

homepages.ed.ac.uk

ethz.ch

europa.eu

ecb.europa.eu

  • Spyros Alogoskoufis, Sante Carbone, Wouter Coussens, Stephan Fahr, Margherita Giuzio, Friderike Kuik, Laura Parisi, Dilyara Salakhova, Martina Spaggiari: Climate-related risks to financial stability. 17. Mai 2021 (europa.eu [abgerufen am 13. Oktober 2023]).
  • Spyros Alogoskoufis, Sante Carbone, Wouter Coussens, Stephan Fahr, Margherita Giuzio, Friderike Kuik, Laura Parisi, Dilyara Salakhova, Martina Spaggiari: Climate-related risks to financial stability. 17. Mai 2021 (europa.eu [abgerufen am 13. Oktober 2023]).

fcrn.org.uk

germanwatch.org

globalchange.gov

science2017.globalchange.gov

grist.org

gsapubs.org

geology.gsapubs.org

  • Michael M. Joachimski, Xulong Lai, Shuzhong Shen, Haishui Jiang, Genming Luo, Bo Chen, Jun Chen and Yadong Sun: Climate warming in the latest Permian and the Permian–Triassic mass extinction. In: Geology. 40. Jahrgang, Nr. 3, Januar 2012, S. 195–198, doi:10.1130/G32707.1 (englisch, gsapubs.org).

harvard.edu

ui.adsabs.harvard.edu

iea.org

iop.org

iopscience.iop.org

ipcc.ch

  • IPCC: Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Hrsg.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 6. Auflage. Intergovernmental Panel on Climate Change, Genf 2021, ISBN 978-92-9169-158-6 (ipcc.ch [PDF; 3,6 MB; abgerufen am 15. Februar 2022]): „It is unequivocal that human influence has warmed the atmosphere, ocean and land. Widespread and rapid changes in the atmosphere, ocean, cryosphere and biosphere have occurred.“
  • IPCC: AR6 Synthesis Report Headline Statements. Abgerufen am 23. April 2024 (Abschnitt A.1).
  • IPCC: Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Hrsg.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 6. Auflage. Cambridge University Press, Cambridge (UK) 2021, S. 17 (ipcc.ch [PDF; abgerufen am 7. Dezember 2021]).
  • Intergovernmental Panel on Climate Change (2007): IPCC Fourth Assessment Report – Working Group I Report on „The Physical Science Basis“ mit Zusammenfassung für Entscheidungsträger deutsch (Memento vom 1. August 2012 im Internet Archive) (PDF; 2,7 MB)
  • P.A. Arias, N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J. Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz, F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li, T. Mauritsen, T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro, T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R. Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, K. Zickfeld: Technical Summary. In: V. Masson-Delmotte, P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou (Hrsg.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA 2021, doi:10.1017/9781009157896.002 (ipcc.ch [PDF; 30,9 MB]).
  • Sechster Sachstandsbericht des IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)], S. 4, 7 und 27f., 29.
  • M. Pathak, R. Slade, P.R. Shukla, J. Skea, R. Pichs-Madruga, D. Ürge-Vorsatz, 2022: Technical Summary. In: Climate Change 2022: Mitigation of Climate Change. Sechster Sachstandsbericht des IPCC [P.R. Shukla, J. Skea, R. Slade, A. Al Khourdajie, R. van Diemen, D. McCollum, M. Pathak, S. Some, P. Vyas, R. Fradera, M. Belkacemi, A. Hasija, G. Lisboa, S. Luz, J. Malley, (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA. doi:10.1017/9781009157926.002.
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 69f, doi:10.1017/9781009157896.002.
  • Piers Forster, Venkatachalam Ramaswamy et al.: Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York 2007, S. 212 (PDF)
  • Climate Change 2001: Working Group I: The Scientific Basis. (PDF) In: Intergovernmental Panel on Climate Change Working Group I. 2001, abgerufen am 18. Mai 2012 (Chapter 6.4 Stratospheric Ozone).
  • G. Myhre, D. Shindell u. a.: Anthropogenic and Natural Radiative Forcing. In: T. F. Stocker u. a. (Hrsg.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, S. 661, 688–691 (ipcc.ch [PDF; 19,4 MB]).
  • G. Myhre, D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura und H. Zhan: Anthropogenic and Natural Radiative Forcing. In: T. F. Stocker u. a. (Hrsg.): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, 8.4.1.5 The Effects of Cosmic Rays on Clouds, S. 691 (englisch, ipcc.ch [PDF]).
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 59f, doi:10.1017/9781009157896.002.
  • IPCC 2018: Kap. 1: Framing and Context, S. 81. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 20. April 2019.
  • Intergovernmental Panel on Climate Change (2007): IPCC Fourth Assessment Report – Working Group I Report „The Physical Science Basis“, Chapter 3: Observations: Surface and Atmospheric Climate Change (PDF; 24 MB)
  • Intergovernmental Panel on Climate Change (IPCC, 2007): Report of Working Group II, Impacts, Adaptation and Vulnerability. Chapter 15: Polar Regions (PDF; 1 MB) (englisch)
  • Stocker, T. F. u a.: Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2013, Climate Feedbacks, S. 57 f. (ipcc.ch [PDF]): „Models and ecosystem warming experiments show high agreement that wetland CH4 emissions will increase per unit area in a warmer climate, […]“
  • Sechster Sachstandsbericht des IPCC. 2021: Arias, P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V. Naik, M.D. Palmer, G.-K. Plattner, J.Rogelj, M. Rojas, J. Sillmann, T. Storelvmo, P.W. Thorne, B. Trewin, K. Achuta Rao, B. Adhikary, R.P. Allan, K. Armour, G. Bala, R. Barimalala, S. Berger, J.G. Canadell, C. Cassou, A. Cherchi, W. Collins, W.D. Collins, S.L. Connors, S. Corti, F. Cruz,F.J. Dentener, C. Dereczynski, A. Di Luca, A. Diongue Niang, F.J. Doblas-Reyes, A. Dosio, H. Douville, F. Engelbrecht, V. Eyring, E. Fischer, P. Forster, B. Fox-Kemper, J.S. Fuglestvedt, J.C. Fyfe, N.P. Gillett, L. Goldfarb, I. Gorodetskaya, J.M. Gutierrez, R. Hamdi, E. Hawkins, H.T. Hewitt, P. Hope, A.S. Islam, C. Jones, D.S. Kaufman, R.E. Kopp, Y. Kosaka, J. Kossin, S. Krakovska, J.-Y. Lee, J. Li,T. Mauritsen,T.K. Maycock, M. Meinshausen, S.-K. Min, P.M.S. Monteiro,T. Ngo-Duc, F. Otto, I. Pinto, A. Pirani, K. Raghavan, R. Ranasinghe, A.C. Ruane, L. Ruiz, J.-B. Sallée, B.H. Samset, S. Sathyendranath, S.I. Seneviratne, A.A. Sörensson, S. Szopa, I. Takayabu, A.-M. Tréguier, B. van den Hurk, R.Vautard, K. von Schuckmann, S. Zaehle, X. Zhang, and K. Zickfeld, 2021: Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 33–144, S. 96f, doi:10.1017/9781009157896.002.
  • IPCC: Climate Change 2007: Working Group I: The Physical Science Basis. Cambridge University Press, 2007, 6.3.2 What Does the Record of the Mid-Pliocene Show? (englisch, ipcc.ch): “Geologic evidence and isotopes agree that sea level was at least 15 to 25 m above modern levels.”
  • IPCC 2018: Summary for Policymakers, S. 7.. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 20. April 2019.
  • IPCC 2018: Summary for Policymakers, S. 10.. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 20. April 2019.
  • IPCC: Summary for Policymakers. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 20. April 2019.
  • IPCC 2018: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development, S. 95. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 21. April 2019.
  • AR4, Part III: Mitigation of Climate Change, Chap. 4. IPCC-Tabelle 4.2
  • IPCC 2018: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development, S. 149. Sonderbericht 1,5 °C globale Erwärmung. Abgerufen am 20. April 2019.

klimafakten.de

leopoldina.org

lse.ac.uk

lta.org

climatechange.lta.org

  • Richard E. Zeebe, Andy Ridgwell, James C. Zachos: Anthropogenic carbon release rate unprecedented during the past 66 million years. In: Nature Geoscience. 9. Jahrgang, Nr. 4, April 2016, S. 325–329, doi:10.1038/ngeo2681 (englisch, lta.org [PDF]).

medscape.com

  • W. R. Keatinge & G. C. Donaldson: The Impact of Global Warming on Health and Mortality. In: Southern Medical Journal 97 (11), S. 1093–1099, November 2004. online

mementoweb.org

timetravel.mementoweb.org

mpg.de

pure.mpg.de

  • Hasselmann K, Bengtsson L, Cubasch U, Hegerl GC, Rodhe H, Roeckner E, von Storch H, Voss R, Waszkewitz J: Detection of anthropogenic climate change using a fingerprint method. In: Peter D. Ditlevsen (Hrsg.): Modern dynamical meteorology: Proceedings from a symposium in honor of Prof. Aksel Wiin-Nielsen. University of Copenhagen. Department of Geophysics, Copenhagen 1995, doi:10.17617/2.2534307 (mpg.de [PDF; 1,2 MB]): „The probability that the observed increase in near-surface temperatures in recent decades is of natural origin is estimated to be less than 5 %.“

mpg.de

nap.edu

nas.edu

dels.nas.edu

  • National Academies of Science: Abrupt Impacts of Climate Change – Anticipating Surprises (PDF)

nasa.gov

data.giss.nasa.gov

earthobservatory.nasa.gov

nasa.gov

nationalacademies.org

  • The National Academies (2007): Joint science academies’ statement on growth and responsibility: sustainability, energy efficiency and climate protection (PDF; 198 kB)
  • The National Academies (2008): Joint Science Academies’ Statement: Climate Change Adaptation and the Transition to a Low Carbon Society (PDF; 198 kB)

nature.com

  • J.E. Harries, H.E. Brindley, P.J. Sagoo, R.J. Bantges (2001): Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, Band 410, S. 355–357, 15. März, online
  • Dieter Lüthi, Martine Le Floch, Bernhard Bereiter, Thomas Blunier, Jean-Marc Barnola, Urs Siegenthaler, Dominique Raynaud, Jean Jouzel, Hubertus Fischer, Kenji Kawamura & Thomas F. Stocker: High-resolution carbon dioxide concentration record 650,000–800,000 years before present. In: Nature. Band 453, S. 379–382, 2008, doi:10.1038/nature06949
  • Mason Inman: Carbon is forever. In: Nature Reports Climate Change. 20. November 2008, doi:10.1038/climate.2008.122
  • Yangyang Xu, Veerabhadran Ramanathan, David G. Victor: Global warming will happen faster than we think. In: Nature. Band 564, Nr. 7734, 5. Dezember 2018, S. 30–32, doi:10.1038/d41586-018-07586-5 (nature.com).
  • Christoph C. Raible, Julian Flückiger, Abdul Malik, Matthias Worni, Andrew Schurer: Last phase of the Little Ice Age forced by volcanic eruptions. In: Nature Geoscience. Band 12, Nr. 8, August 2019, ISSN 1752-0908, S. 650–656, doi:10.1038/s41561-019-0402-y (nature.com [abgerufen am 16. August 2019]).
  • V. Ramaswamy, M. D. Schwarzkopf, W. J. Randel (1996): Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. In: Nature Band 382, S. 616–618, 15. August, siehe Abstract online
  • Mason Inman: Carbon is forever. In: Encyclopedia of Things. Nature reports, 20. November 2008, abgerufen am 12. September 2012.
  • David P. Keller, Ellias Y. Feng & Andreas Oschlies: Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario. In: Nature. 5. Jahrgang, Januar 2014, S. 3304, doi:10.1038/ncomms4304 (englisch, nature.com): “We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change.”
  • Matthew N. Hayek, Helen Harwatt, William J. Ripple, Nathaniel D. Mueller: The carbon opportunity cost of animal-sourced food production on land. In: Nature Sustainability. 7. September 2020, ISSN 2398-9629, S. 1–4, doi:10.1038/s41893-020-00603-4 (englisch, nature.com).

nbn-resolving.de

  • H. Arnold: Global Warming by Anthropogenic Heat, a Main Problem of Fusion Techniques. In: Digitale Bibliothek Thüringen. 2016, S. 1–16, urn:nbn:de:gbv:ilm1-2016200087.

nih.gov

ncbi.nlm.nih.gov

noaa.gov

ncei.noaa.gov

celebrating200years.noaa.gov

  • NOAA celebrates 200 years of science, service and stewardship, Top 10: Breakthroughs: Warming of the World Ocean Online

gfdl.noaa.gov

  • U.S. Climate Change Science Program (2006): Temperature Trends in the Lower Atmosphere. Steps for Understanding and Reconciling Differences (PDF)

nytimes.com

orf.at

science.orf.at

pik-potsdam.de

plos.org

journals.plos.org

pnas.org

pppl.gov

fire.pppl.gov

  • Stephen Pacala, Robert Socolow: Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. In: Science. 305, 14. August 2004, S. 968–972 (PDF; 181 kB)

redirecter.toolforge.org

  • Frequently Asked Question 6.2: Is the Current Climate Change Unusual Compared to Earlier Changes in Earth’s History? Climate Change 2007: Working Group I: The Physical Science Basis. IPCC, 2007, archiviert vom Original am 16. Mai 2016; abgerufen am 20. Mai 2016 (englisch).
  • US Department of Commerce, NOAA, Earth System Research Laboratory: ESRL Global Monitoring Division – Global Greenhouse Gas Reference Network. Archiviert vom Original am 16. Dezember 2019; abgerufen am 15. Februar 2017 (amerikanisches Englisch).
  • IPCC/TEAP Special Report on Safeguarding the Ozone Layer and the Global Climate System: Issues Related to Hydrofluorocarbons and Perfluorocarbons (summary for policy makers). In: Intergovernmental Panel on Climate Change and Technology and Economic Assessment Panel. 2005 (englisch, ipcc.ch (Memento des Originals vom 21. Februar 2007 im Internet Archive)).
  • Block, A., K. Keuler, and E. Schaller: Impacts of anthropogenic heat on regional climate patterns. In: Geophys. Res. Lett. 31. Jahrgang, Nr. 12, 2004, S. L12211, doi:10.1029/2004GL019852, bibcode:2004GeoRL..3112211B (englisch, agu.org (Memento des Originals vom 6. Juni 2011 im Internet Archive) [abgerufen am 11. Juli 2011]).
  • J.C.G Walker, P.B. Hays, J.F. Kasting: A Negative Feedback Mechanism for the Long-term Stabilization of Earth’s Surface Temperature. In: J. Geophys. Res. 86. Jahrgang, 1981, S. 1,147–1,158, doi:10.1029/JC086iC10p09776 (englisch, .geosc.psu.edu (Memento des Originals vom 22. Oktober 2013 im Internet Archive)).

researchgate.net

royalsociety.org

  • Gemeinsame Stellungnahme der nationalen Wissenschaftsakademien der G8-Länder sowie Brasiliens, Indiens und Chinas. Herausgegeben von The Royal Society 2005: Joint science academies’ statement: Global response to climate change. Ref 08/05 Online
  • Royal Society (2001): The Science of Climate Change Online

royalsocietypublishing.org

s3.amazonaws.com

sciencedaily.com

sciencedirect.com

  • Johannes Reichl, Jed J. Cohen, Christian A. Klöckner, Andrea Kollmann, Valeriya Azarova: The drivers of individual climate actions in Europe. In: Global Environmental Change. Band 71, 1. November 2021, ISSN 0959-3780, S. 102390, doi:10.1016/j.gloenvcha.2021.102390 (sciencedirect.com [abgerufen am 22. November 2021]).

sciencemag.org

sciencemag.org

science.sciencemag.org

advances.sciencemag.org

scilogs.de

scinexx.de

  • Sonnenaktivität war nicht schuld an „kleiner Eiszeit“. In: scinexx | Das Wissensmagazin. 2. September 2011 (scinexx.de [abgerufen am 16. August 2019]).

seos-project.eu

snowballearth.org

spektrum.de

scilogs.spektrum.de

spiegel.de

  • Stefan Rahmstorf: Was der neue Bericht des Weltklimarats für uns bedeutet. Analyse des IPCC. In: Spiegel. 9. August 2021, abgerufen am 5. September 2021: „Nach Stand der Daten muss man rund 125.000 Jahre zurückgehen, bis in die Eem-Warmzeit vor der letzten Eiszeit, um global ähnlich hohe Temperaturen zu finden.“

srf.ch

statista.com

de.statista.com

sueddeutsche.de

swsc-journal.org

  • John Fasullo, Andrew Schurer, Luke Barnard, Gareth S. Jones, Ilya Usoskin: The Maunder minimum and the Little Ice Age: an update from recent reconstructions and climate simulations. In: Journal of Space Weather and Space Climate. Band 7, 2017, ISSN 2115-7251, S. A33, doi:10.1051/swsc/2017034 (swsc-journal.org [abgerufen am 16. August 2019]).

tagesschau.de

tellusb.net

  • The Carbon Dioxide Theory of Climatic Change. G.N. Plass, Tellus 8, S. 140–154, 1956 (PDF)

theguardian.com

thelancet.com

trafo-comic.blogspot.de

ufz.de

umass.edu

geo.umass.edu

  • Mark Pagani, Zhonghui Liu, Jonathan LaRiviere, Ana Christina Ravelo: High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. In: Nature Geoscience. 3. Jahrgang, 2010, doi:10.1038/ngeo724 (englisch, umass.edu [PDF])., abgerufen am 8. Oktober 2015

umweltbundesamt.de

umweltrat.de

unenvironment.org

unep.org

unfccc.int

unsw.edu.au

ccrc.unsw.edu.au

  • The Copenhagen Diagnosis (2009): Updating the World on the Latest Climate Science. I. Allison, N.L. Bindoff, R. Bindschadler, P.M. Cox, N. de Noblet, M.H. England, J.E. Francis, N. Gruber, A.M. Haywood, D.J. Karoly, G. Kaser, C. Le Quéré, T.M. Lenton, M.E. Mann, B.I. McNeil, A.J. Pitman, S. Rahmstorf, Eric Rignot, H.J. Schellnhuber, S.H. Schneider, S.C. Sherwood, R.C.J. Somerville, K. Steffen, E.J. Steig, M. Visbeck, A.J. Weaver. The University of New South Wales Climate Change Research Centre (CCRC), Sydney, Australia, 60pp, (PDF; 3,5 MB)

utexas.edu

geo.utexas.edu

  • J. T. Kiehl, Kevin E. Trenberth: Earth's Annual Global Mean Energy Budget. In: Bulletin of the American Meteorological Society. Band 78, Nr. 2, Februar 1997, S. 197–208 (utexas.edu [PDF; abgerufen am 16. August 2019]).

utoronto.ca

atmosp.physics.utoronto.ca

wbgu.de

web.archive.org

wef.ch

weltderphysik.de

wesleyan.edu

ethomas.faculty.wesleyan.edu

who.int

whoi.edu

wikipedia.org

en.wikipedia.org

wiley.com

onlinelibrary.wiley.com

windows2universe.org

wiwo.de

wmo.int

wmo.int

public.wmo.int

library.wmo.int

  • WMO: State of the Global Climate 2020. WMO-No. 1264. World Meteorological Organization, Genf, CH 2021, ISBN 978-92-63-11264-4, S. 18 (wmo.int [abgerufen am 29. August 2021]): „Since the mid-1980s, Arctic surface air temperatures have warmed at least twice as fast as the global average, …“

worldbank.org

climatechange.worldbank.org

worldbank.org

wwf.org.br

assets.wwf.org.br

  • McKinsey & Company: Pathways to a Low-carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve. (PDF; 6,9 MB) (2009).

yale.edu

people.earth.yale.edu

  • Yi Ge Zhang, Mark Pagani, Zhonghui Liu, Steven M. Bohaty, Robert DeConto: A 40-million-year history of atmospheric CO2. In: The Royal Society (Philosophical Transactions A). 371. Jahrgang, Nr. 2001, September 2013, doi:10.1098/rsta.2013.0096 (englisch, yale.edu [PDF]).

youtube.com

  • Global Warming: Is the Science Settled Enough for Policy? Vortrag von Stephen Schneider im Rahmen der Stanford University Office Science Outreach Summer Science lecture Youtube

zdb-katalog.de

zeit.de