Analysis of information sources in references of the Wikipedia article "Albinism" in English language version.
There is no apparent reason why selection for albinism should have been greater at Morton Plains thanelse where in north-western Victoria. It is likely that its high occurrence there is a founder effect from the domestic-type feral population established during the 1860s.
albinism in fish.
The inheritance pattern for most forms of albinism is autosomal recessive.
Some dominant chromogenic mutations are known and in fact there are more than predicted by the Haldane-Fisher theory of evolution of wild type dominance (Searle, 1968, p. 250)"..."Of 32 dominant mutations known in the mouse as many as nine are chromogenic (Hadorn, 1961, p. 132). This is a very high percentage of the 40 coal-colour genes known among the mouse and implies that dominant mutations are rather characteristic of colour genes. The dilation gene of the palomino horse is dominant and there is a dominant white in many mammals so that dominance/recessivity is not necessarily positively correlated with excess/deficiency. the dominant white is not so deficient in pigment as the true albino and in particular as the normal eye-pigmentation, so that in Atz' lobster the pigmentation of this organ can be controlled independently of that integument. It would seem that the retention of essential pigment by the dominant white has been naturally selected and that presumably its whole phenotype has been selected. Arctic white races and species no doubt have this type of allele. True recessive albinos lack tyrosinase (Onslow, 1917; Foster, 1952; Barnicott, 1957; Fitzpatrick et al., 1958) or have the enzyme but no free tyrosine (Verne, 1926, p. 535; Fox and Vevers, 1960, p. 37) but in the dominant white the enzyme is present in the skin, under inhibition.
RSA was also used to identify markers associated with the dominant albino phenotype in a Japanese strain of rainbow trout.
Consider albino animals of the arctic. Hungry predators may have unwittingly selected for the albino color variant by eating more of the easily visible dark-colored variants.
In the Hopi culture, albinos were considered special and given special status. Because extensive exposure to sunlight could be damaging or deadly, Hopi male albinos did no agricultural work. Albinism was considered a positive trait rather than a negative physical condition, allowing albinos to have more children and thus increasing the frequency of the allele.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.
Indeed, two Mendelian pigment phenotypes (albinism and brown) are both widespread, highly penetrant, and mediated through loss-of-function mutations in the genes Oca2 and Mc1r, respectively [12, 54]. Recent studies have provided evidence of selection for albinism as a means of increasing catecholamine levels, which promote adaptive feeding and sleep behaviors in Astyanax cavefish.