Heinrich Karl Brugsch-Bey and Henry Danby Seymour, "A History of Egypt Under the Pharaohs". J. Murray, 1881. Page 422. (cf. [... the symbol of a] 'serpent' is rather a fish, which still serves, in the Coptic language, to designate the electric fish [...])
Benjamin, P. (1895). A history of electricity: (The intellectual rise in electricity) from antiquity to the days of Benjamin Franklin. New York: J. Wiley & Sons.
Gordon gave four lectures on static electric induction (S. Low, Marston, Searle, and Rivington, 1879). In 1891, he also published "A treatise on electricity and magnetism]). Vol 1. Vol 2. (S. Low, Marston, Searle & Rivington, limited).
Bruno Kolbe, Francis ed Legge, Joseph Skellon, tr., "An Introduction to Electricity". Kegan Paul, Trench, Trübner, 1908. 429 pages. Page 391. (cf. "[...] high poles covered with copper plates and with gilded tops were erected 'to break the stones coming from on high'. J. Dümichen, Baugeschichte des Dendera-Tempels, Strassburg, 1877")
Hutton, C., Shaw, G., Pearson, R., & Royal Society (Great Britain). (1665). Philosophical transactions of the Royal Society of London: From their commencement, in 1665 to the year 1800. London: C. and R. Baldwin. PaGE 345.
The works of Benjamin Franklin: containing several political and historical tracts not included in any former ed., and many letters official and private, not hitherto published; with notes and a life of the author, Volume 6 Page 348.
Elementary Lessons in Electricity and Magnetism By Silvanus Phillips Thompson. Page 363.
"On a permanent Deflection of the Galvanometer-needle under the influence of a rapid series of equal and opposite induced Currents". By Lord Rayleigh, F.R.S.. Philosophical magazine, 1877. Page 44.
Glazebrook, R. (1896). James Clerk Maxwell and modern physics. New York: Macmillan.Pg. 190
Gordon gave four lectures on static electric induction (S. Low, Marston, Searle, and Rivington, 1879). In 1891, he also published "A treatise on electricity and magnetism]). Vol 1. Vol 2. (S. Low, Marston, Searle & Rivington, limited).
Guarnieri, M. (2014). "Electricity in the age of Enlightenment". IEEE Industrial Electronics Magazine. 8 (3): 60–63. doi:10.1109/MIE.2014.2335431. S2CID34246664.
Guarnieri, M. (2014). "The Big Jump from the Legs of a Frog". IEEE Industrial Electronics Magazine. 8 (4): 59–61+69. doi:10.1109/MIE.2014.2361237. S2CID39105914.
Ronalds, B.F. (2016). "Sir Francis Ronalds and the Electric Telegraph". International Journal for the History of Engineering & Technology. 86: 42–55. doi:10.1080/17581206.2015.1119481. S2CID113256632.
Lorentz, H. A.; Lorentz, H. A. (1928), "Conference on the Michelson-Morley Experiment", The Astrophysical Journal, 68: 345–351, Bibcode:1928ApJ....68..341M, doi:10.1086/143148
Blalock, Thomas J. (31 December 2015). "Alternating Current Electrification, 1886". Engineering and Technology History Wiki. United Engineering Foundation. Retrieved 22 April 2018."Stanley Transformer – 1886". Magnet Academy. National High Magnetic Field Laboratory. 10 December 2014. Retrieved 22 April 2018.
fu-berlin.de
users.physik.fu-berlin.de
Paul Dirac, "Quantised Singularities in the Electromagnetic Field". Proc. Roy. Soc. (London) A 133, 60 (1931). Free web link.
gsu.edu
hyperphysics.phy-astr.gsu.edu
R. Nave. "Parity". HyperPhysics/Georgia State University.
Lorentz, H. A.; Lorentz, H. A. (1928), "Conference on the Michelson-Morley Experiment", The Astrophysical Journal, 68: 345–351, Bibcode:1928ApJ....68..341M, doi:10.1086/143148
A hypothetical particle in particle physics that is a magnet with only one magnetic pole. In more technical terms, a magnetic monopole would have a net "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unification and superstring theories, which predict their existence. See Particle Data Group summary of magnetic monopole search; Wen, Xiao-Gang; Witten, Edward, Electric and magnetic charges in superstring models, Nuclear Physics B, Volume 261, p. 651-677; and Coleman, The Magnetic Monopole 50 years Later, reprinted in Aspects of Symmetry for more
Ruth Lewin Sime. From Exceptional Prominence to Prominent Exception: Lise Meitner at the Kaiser Wilhelm Institute for ChemistryErgebnisse 24 Forschungsprogramm Geschichte der Kaiser-Wilhelm-Gesellschaft im Nationalsozialismus (2005).
Blalock, Thomas J. (31 December 2015). "Alternating Current Electrification, 1886". Engineering and Technology History Wiki. United Engineering Foundation. Retrieved 22 April 2018."Stanley Transformer – 1886". Magnet Academy. National High Magnetic Field Laboratory. 10 December 2014. Retrieved 22 April 2018.
nature.com
Lise Meitner and O. R. Frisch. "Disintegration of Uranium by Neutrons: a New Type of Nuclear Reaction", Nature, Volume 143, Number 3615, 239–240 (11 February 1939). The paper is dated 16 January 1939. Meitner is identified as being at the Physical Institute, Academy of Sciences, Stockholm. Frisch is identified as being at the Institute of Theoretical Physics, University of Copenhagen.
Kurt Lehovec's patent on the isolation p-n junction: U.S. patent 3,029,366 granted on April 10, 1962, filed April 22, 1959. Robert Noyce credits Lehovec in his article – "Microelectronics", Scientific American, September 1977, Volume 23, Number 3, pp. 63–9.
Guarnieri, M. (2014). "Electricity in the age of Enlightenment". IEEE Industrial Electronics Magazine. 8 (3): 60–63. doi:10.1109/MIE.2014.2335431. S2CID34246664.
Guarnieri, M. (2014). "The Big Jump from the Legs of a Frog". IEEE Industrial Electronics Magazine. 8 (4): 59–61+69. doi:10.1109/MIE.2014.2361237. S2CID39105914.
Ronalds, B.F. (2016). "Sir Francis Ronalds and the Electric Telegraph". International Journal for the History of Engineering & Technology. 86: 42–55. doi:10.1080/17581206.2015.1119481. S2CID113256632.
Guarnieri, M. (2015). "How the Genie of Electronics Sprung Out". IEEE Industrial Electronics Magazine. 9 (1): 77–79. doi:10.1109/MIE.2014.2387945. S2CID9232535.
J J O'Connor and E F Robertson, James Clerk MaxwellArchived 2011-01-28 at the Wayback Machine, School of Mathematics and Statistics, University of St Andrews, Scotland, November 1997
J J O'Connor and E F Robertson, James Clerk MaxwellArchived 2011-01-28 at the Wayback Machine, School of Mathematics and Statistics, University of St Andrews, Scotland, November 1997
O. R. Frisch. "Physical Evidence for the Division of Heavy Nuclei under Neutron Bombardment", Nature, Volume 143, Number 3616, 276–276 (18 February 1939)Archived 2009-01-23 at the Wayback Machine. The paper is dated 17 January 1939. [The experiment for this letter to the editor was conducted on 13 January 1939; see Richard RhodesThe Making of the Atomic Bomb. 263 and 268 (Simon and Schuster, 1986).]
A hypothetical particle in particle physics that is a magnet with only one magnetic pole. In more technical terms, a magnetic monopole would have a net "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unification and superstring theories, which predict their existence. See Particle Data Group summary of magnetic monopole search; Wen, Xiao-Gang; Witten, Edward, Electric and magnetic charges in superstring models, Nuclear Physics B, Volume 261, p. 651-677; and Coleman, The Magnetic Monopole 50 years Later, reprinted in Aspects of Symmetry for more
O. R. Frisch. "Physical Evidence for the Division of Heavy Nuclei under Neutron Bombardment", Nature, Volume 143, Number 3616, 276–276 (18 February 1939)Archived 2009-01-23 at the Wayback Machine. The paper is dated 17 January 1939. [The experiment for this letter to the editor was conducted on 13 January 1939; see Richard RhodesThe Making of the Atomic Bomb. 263 and 268 (Simon and Schuster, 1986).]