Euler (1761); Siegel (1969). Prasolov & Solovyev (1997) use the polar-coordinate representation of the Lemniscate to derive differential arc length, but the result is the same. Euler, Leonhard (1761). "Observationes de comparatione arcuum curvarum irrectificibilium" [Observations on the comparison of arcs of irrectifiable curves]. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae (in Latin). 6: 58–84. E252. (Figures) Siegel, Carl Ludwig (1969). "1. Elliptic Functions". Topics in Complex Function Theory, Vol. I. Wiley-Interscience. pp. 1–89. ISBN0-471-60844-0. Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170.
Robinson (2019a) starts from this definition and thence derives other properties of the lemniscate functions. Robinson, Paul L. (2019a). "The Lemniscatic Functions". arXiv:1902.08614.
Prasolov & Solovyev (1997); Robinson (2019a) Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170. Robinson, Paul L. (2019a). "The Lemniscatic Functions". arXiv:1902.08614.
The circle is the unit-diameter circle centered at with polar equation the degree-2 clover under the definition from Cox & Shurman (2005). This is not the unit-radius circle centered at the origin. Notice that the lemniscate is the degree-4 clover. Cox, David Archibald; Shurman, Jerry (2005). "Geometry and number theory on clovers"(PDF). The American Mathematical Monthly. 112 (8): 682–704. doi:10.1080/00029890.2005.11920241.
Ayoub (1984); Prasolov & Solovyev (1997)Ayoub, Raymond (1984). "The Lemniscate and Fagnano's Contributions to Elliptic Integrals". Archive for History of Exact Sciences. 29 (2): 131–149. doi:10.1007/BF00348244. Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170.
Gómez-Molleda & Lario (2019) Gómez-Molleda, M. A.; Lario, Joan-C. (2019). "Ruler and Compass Constructions of the Equilateral Triangle and Pentagon in the Lemniscate Curve". The Mathematical Intelligencer. 41 (4): 17–21. doi:10.1007/s00283-019-09892-w.
Euler (1761); Siegel (1969). Prasolov & Solovyev (1997) use the polar-coordinate representation of the Lemniscate to derive differential arc length, but the result is the same. Euler, Leonhard (1761). "Observationes de comparatione arcuum curvarum irrectificibilium" [Observations on the comparison of arcs of irrectifiable curves]. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae (in Latin). 6: 58–84. E252. (Figures) Siegel, Carl Ludwig (1969). "1. Elliptic Functions". Topics in Complex Function Theory, Vol. I. Wiley-Interscience. pp. 1–89. ISBN0-471-60844-0. Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170.
Abel (1827–1828); Rosen (1981); Prasolov & Solovyev (1997)Rosen, Michael (1981). "Abel's Theorem on the Lemniscate". The American Mathematical Monthly. 88 (6): 387–395. doi:10.2307/2321821. Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170.
Euler (1761); Siegel (1969). Prasolov & Solovyev (1997) use the polar-coordinate representation of the Lemniscate to derive differential arc length, but the result is the same. Euler, Leonhard (1761). "Observationes de comparatione arcuum curvarum irrectificibilium" [Observations on the comparison of arcs of irrectifiable curves]. Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae (in Latin). 6: 58–84. E252. (Figures) Siegel, Carl Ludwig (1969). "1. Elliptic Functions". Topics in Complex Function Theory, Vol. I. Wiley-Interscience. pp. 1–89. ISBN0-471-60844-0. Prasolov, Viktor; Solovyev, Yuri (1997). "4. Abel's Theorem on Division of Lemniscate". Elliptic functions and elliptic integrals. Translations of Mathematical Monographs. Vol. 170. American Mathematical Society. doi:10.1090/mmono/170.
The circle is the unit-diameter circle centered at with polar equation the degree-2 clover under the definition from Cox & Shurman (2005). This is not the unit-radius circle centered at the origin. Notice that the lemniscate is the degree-4 clover. Cox, David Archibald; Shurman, Jerry (2005). "Geometry and number theory on clovers"(PDF). The American Mathematical Monthly. 112 (8): 682–704. doi:10.1080/00029890.2005.11920241.
Gauss, C. F. (1866). Werke (Band III) (in Latin and German). Herausgegeben der Königlichen Gesellschaft der Wissenschaften zu Göttingen. p. 405; there's an error on the page: the coefficient of should be , not .