Pearson's chi-squared test (English Wikipedia)

Analysis of information sources in references of the Wikipedia article "Pearson's chi-squared test" in English language version.

refsWebsite
Global rank English rank
2nd place
2nd place
69th place
59th place
355th place
454th place
4th place
4th place
621st place
380th place
18th place
17th place
5th place
5th place
75th place
83rd place
488th place
374th place
415th place
327th place
low place
low place

arxiv.org

  • Loukas, Orestis; Chung, Ho Ryun (2022). "Entropy-based Characterization of Modeling Constraints". arXiv:2206.14105 [stat.ME].
  • Loukas, Orestis; Chung, Ho Ryun (2023). "Total Empiricism: Learning from Data". arXiv:2311.08315 [math.ST].
  • Benhamou, Eric; Melot, Valentin (3 September 2018). "Seven Proofs of the Pearson Chi-Squared Independence Test and its Graphical Interpretation". p. 5-6. arXiv:1808.09171 [math.ST].

columbia.edu

stat.columbia.edu

doi.org

  • Pearson, Karl (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine. Series 5. 50 (302): 157–175. doi:10.1080/14786440009463897.
  • McHugh, Mary (15 June 2013). "The chi-square test of independence". Biochemia Medica. 23 (2): 143–149. doi:10.11613/BM.2013.018. PMC 3900058. PMID 23894860.
  • Cash, W. (1979). "Parameter estimation in astronomy through application of the likelihood ratio". The Astrophysical Journal. 228: 939. Bibcode:1979ApJ...228..939C. doi:10.1086/156922. ISSN 0004-637X.

harvard.edu

ui.adsabs.harvard.edu

inrialpes.fr

www-biba.inrialpes.fr

mit.edu

ocw.mit.edu

  • Statistics for Applications. MIT OpenCourseWare. Lecture 23. Pearson's Theorem. Retrieved 21 March 2007.

nasa.gov

hesperia.gsfc.nasa.gov

nih.gov

ncbi.nlm.nih.gov

pubmed.ncbi.nlm.nih.gov

nist.gov

itl.nist.gov

worldcat.org

search.worldcat.org

zenodo.org

  • Pearson, Karl (1900). "On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling". Philosophical Magazine. Series 5. 50 (302): 157–175. doi:10.1080/14786440009463897.